The Resurgence of Reference Quality Genomes using 3rd Gen Sequencing Michael Schatz

Dec 9, 2014 American Museum of Natural History

Outline

I. Assembly theory

- I. Assembly by analogy
- 2. De Bruijn and Overlap graph
- 3. Coverage, read length, errors, and repeats

2. Sequencing and Assembly options

- I. Illumina/ALLPATHS-LG
- 2. Pacific Biosciences
- 3. Oxford Nanopore
- 3. Summary & Recommendations

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
 – Text printed on 5 long spools

It	was	thevb	esthef	bes tinfes ini	esyais ula	s woers tor	of times,	it was the	a zgeot o	fv ivsitschom ij	t itvæas h	e athe affo	ofistolistanes	s,
It	was	theve	esthe	of times,	t was th	ne wors	st of times	s, it was th	e talgee agge	wisowiad,oi	nwit s th	newaget befe	glishinioolishi	ness,
T+ -	woo	fb er	abdet	bhtimedinit	woit ut	hamorat	of tifotion of	t it was the	ore of	mindom	it was	the ore of	itheliebnes	
11	was	uuwa	SULLEL	Destinestin	waa wa		al minudher	s, it was un	t age of	wisuom, 1	It was		1300010513116.3	,,
It	was	t the	sbielse	besime sinit	es, was a	ihe houstre	of times,es	it was the	e age of	vi sciscio ni	t, iteasat	tehæg age f fo	otistoolistynes	ss,
It	W	alst tilhæ	esbtelset	b£\$im€\$im	eist, vitasva	1. het here outstre	of of times	s, it was the	e age of o	vfiædsahomi	t, ivtavsatsh	nthæge øligfe	ofistoolistsnes	s,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

N50 size

Def: 50% of the genome is in contigs as large as the N50 value

N50 size = 30 kbp (300k+100k+45k+45k+30k = 520k >= 500kbp)

A greater N50 is indicative of improvement in every dimension:

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Milestones in Genome Assembly

Name Trid (M? Advants in 1977)

articles

Nucleotide sequence of bacteriophage Φ X174 DNA

E. Sangar, G. M. Ant, R. G. Barrell, N. L. Brower, A. R. Couban, J. C. Fidder, C. A. Batchines (IF, P. M. Shevander, & M. Santiff Mitchines of Informations, 101 Intel Contrast, 42 (19), 10.

AND DESCRIPTION OF	We is assessed to the pressure on Neuronalization Weith approximately 1.5% in advanced for the Andermann of the stage of and careful light and their stage of the pressure of the stage of the stage of the stage of the pressure of the stage of the stage of the stage of the pressure, and the stage of the st	The second seco

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2001.Venter *et al.*, IHGSC Human Genome Celera Assembler/GigaAssembler. 2.9 Gbp

A CONTRACTOR OF CONTRACTOR OF

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Typical sequencing coverage

Imagine raindrops on a sidewalk

We want to cover the entire sidewalk but each drop costs \$1

Genome Coverage Distribution

• Standard Deviation = sqrt(cov)

This is the mathematically model => reality may be much worse

- Double your coverage for diploid genomes
- Can use somewhat lower coverage in a population to find common variants

Initial Assembly Attempts with early Illumina sequencers circa 2007-2008

(older illumina PE76 library with small insert size -150bp)

Assertian		NOTIONALISE	Main counting telline	Table accountility along
Vehice	25X Neportare	134960	21833ho	325.8 Mbr
Veteral	SEX Apportune	41180	23090ko	401.6 Mbp
Abyse	25X Neporters	185360	136Mite	288.4 Mbp
Aliyes	SEX Neportare	294799	3485350	317.4 Min
Alayse	30K peach	212300	2707Mp	187.2 Mbp

W.R. McCombie

Assembly Complexity

Assembly Complexity

The advantages of SMRT sequencing Roberts, RJ, Carneiro, MO, Schatz, MC (2013) *Genome Biology*. 14:405

Short Read Assembly with ALLPATHS

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180*	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no**
Fosmid jump	40,000	≥ 26	1	no**

High-quality draft assemblies of mammalian genomes from massively parallel sequence data

Gnerre et al (2010) PNAS. doi: 10.1073/pnas.1017351108

Population structure of Oryza sativa

Indica

Total Span: 344.3 Mbp Contig N50: 22.2kbp

Aus

Total Span: 344.9Mbp Contig N50: 25.5kbp

Nipponbare

Total Span: 354.9Mbp Contig N50: 21.9kbp

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica Schatz, Maron, Stein et al (2014) Genome Biology. 15:506 doi:10.1186/s13059-014-0506-z

Oryza sativa Gene Diversity

- Very high quality representation of the "gene-space"
 - Overall identity ~99.9%
 - Less than 1% of exonic bases missing
- Genome-specific genes enriched for disease resistance
 - Reflects their geographic and environmental diversity
- Assemblies fragmented at (high copy) repeats
 - Difficult to identify full length gene models and regulatory features

Overall sequence content

In each sector, the top number is the total number of base pairs, the middle number is the number of exonic bases, and the bottom is the gene count. If a gene is partially shared, it is assigned to the sector with the most exonic bases.

Long Read Sequencing Technology

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAC TTGTAAC	GCAGTTGAA. GCAGTTGAA.	AACTATG 	TGT <mark>G</mark> GA TGT - GA	TTTAG <mark>7</mark> TTTAG-	ATAAA0 ATAAA0	3AACAT 3AACAT	G <mark>A</mark> AAG G <mark>G</mark> AAG
ATTATA 	AA-CAGTTG. AA <mark>T</mark> CAGTTG.	ATCCATT ATCCATT	-AGAAG AAGAA-	A–AAAO 	CGCAAA <i>A</i> CGC - AAA	4GGC <mark>G</mark> G 4GGC - G	CTAGG CTAGG
CAACCT C-ACCT	FG <mark>A</mark> ATGT <mark>A</mark> A 	T <mark>CG</mark> CACT TCACT	TGAAGA TGAAGA	ACAAG# ACAAG#	\TTTTA1 \TTTTA1	TTCCGC	GCCCG GCCCG
TAACGAA T-ACGAA	ATC <mark>A</mark> AGATT ATC-AGATT	CTGAAAA 	CA <mark>C</mark> AT– CA–AT <mark>G</mark>	AT <mark>AAC</mark> AT	ACCTCC ACCTCC	2AAAA- 2AAAA <mark>G</mark>	CACAA CACAA
-AGGAGO <mark>G</mark> AGGAGO	G <mark>GGA</mark> AAGGG GAA	GGGAATA GAATA	TCT-AT TCT <mark>G</mark> AT	<mark>A</mark> AAAG7 –AAAG7	ATTACA <i>I</i> ATTACA <i>I</i>	ATT <mark>A</mark> G ATT-G	A–TGA A <mark>G</mark> TGA
ACT-AA ACT <mark>A</mark> AA	FTCACAA <mark>T</mark> A FTCACAA-A'	-AATAAC TAATAAC	ACTTTT ACTTTT	'A-ACAG 'A <mark>G</mark> ACA /	AATTGI	\T-GGA \T <mark>G</mark> GGA	A-GTT A <mark>G</mark> GTT
TC <mark>G</mark> GAGA TC - GAGA	AGATCCAAA 	ACAAT <mark>G</mark> G ACAAT-G	GC-ATC GC <mark>G</mark> ATC	G <mark>C</mark> CTTT G-CTTT	'GA-GT' 'GA <mark>C</mark> GT'	IAC-AA	TCAAA TCAAA
ATCCAG ATCCAG	Г <mark>G</mark> GAAAATA' 	TA <mark>AT</mark> TTA 	.TGC <mark>A</mark> AT 	CCA <mark>G</mark> GA	ACTTA1	ITCACA	ATTAG ATTAG

Sample of 100k reads aligned with BLASR requiring >100bp alignment

Single Molecule Sequencing

"Corrective Lens" for Sequencing

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012) Nature Biotechnology. 30:693–700

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

PacBio Assembly Algorithms

PBJelly	PacBioToCA & ECTools	HGAP & Quiver
		Pr(R T) Quiver Performance Results K Comparison to Reference Genome (M. ruber ; 3.1 MB ; SMRT* Cells) T T K T <
Gap Filling and Assembly Upgrade	Hybrid/PB-only Error Correction	PB-only Correction & Polishing
English et al (2012)	Koren, Schatz, et al (2012)	Chin et al (2013)
PLOS One. 7(11): e47768	Nature Biotechnology. 30:693–700	Nature Methods. 10:563–569
		L

< 5x

PacBio Coverage

> 50x

S. pombe dg21

PacBio RS II sequencing at CSHL

 Size selection using an 7 Kb elution window on a BluePippin[™] device from Sage Science

S. pombe dg21

ASM294 Reference sequence

• 12.6Mbp; 3 chromo + mitochondria; N50: 4.53Mbp

PacBio assembly using HGAP + Celera Assembler

• 12.7Mbp; 13 non-redundant contigs; N50: 3.83Mbp; >99.98% id

S. pombe dg21

ASM294 Reference sequence

• 12.6Mbp; 3 chromo + mitochondria; N50: 4.53Mbp

PacBio assembly using HGAP + Celera Assembler

• 12.7Mbp; 13 non-redundant contigs; N50: 3.83Mbp; >99.98% id

O. sativa pv Indica (IR64)

PacBio RS II sequencing at PacBio

 Size selection using an 10 Kb elution window on a BluePippin[™] device from Sage Science

O. sativa pv Indica (IR64)

Genome size: ~370 Mb Chromosome N50: ~29.7 Mbp

Assembly	Contig					
	NG50	81		HGAP F	Read Le	ngths
MiSeq Fragments 25x 456bp (3 runs 2x300 @ 450 FLASH)	I9 kbp	8000		Max: 22.7x (disca	53,652 over 10 rded re	bp kbp ads
"ALLPATHS-recipe" 50x 2x100bp @ 180 36x 2x50bp @ 2100 51x 2x50bp @ 4800	18 kbp	0000		Derov	V 0500k	(קי
HGAP 22.7x @ 10kbp	4.0 Mbp					
Nipponbare BAC-by-BAC Assembly	5.1 Mbp	10000	2000	30000	4308	90000

Current Collaborations

Asian Sea Bass Temasek Life Sciences

Hannon

P. hominis NYU

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC http://www.biorxiv.org/content/early/2014/06/18/006395

Oxford Nanopore MinION

- Thumb drive sized sequencer
 powered over USB
- Capacity for 512 reads at once
- Senses DNA by measuring changes to ion flow

Nanopore Sequencing

Nanopore Basecalling

Basecalling currently performed at Amazon with frequent updates to algorithm

- Only four options per transition
- Pore type = distinct kmer length

Nanopore Accuracy

Alignment Quality (BLASTN)

Of reads that align, average ~64% identity "2D base-calling" improves to ~70% identity

NanoCorr: Nanopore-Illumina Hybrid Error Correction

https://github.com/jgurtowski/nanocorr

- I. BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove
 "contained" alignments
 - Second pass uses Dynamic Programming (LIS) to select set of high-identity alignments with minimal overlaps
- 3. Compute consensus of each Oxford Nanopore read
 - Currently using Pacbio's pbdagcon

Long Read Assembly

S288C Reference sequence

• 12.1Mbp; 16 chromo + mitochondria; N50: 924kbp

Illumina MiSeq

illumina

30x, 300bp PE (Flashed)

- 6953 non-redundant contigs
- N50:59kbp >99.9% id

NanoCorr + Celera Assembler

- 214 non-redundant contigs
- N50: 472kbp >99.78% id

Genomic Futures?

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

What should we expect from an assembly?

Analysis of dozens of genomes from across the tree of life with real and simulated data

Summary & Recommendations

- < 100 Mbp: HGAP/PacBio2CA @ 100x PB C3-P5 expect near perfect chromosome arms
- < IGB: HGAP/PacBio2CA @ 100x PB C3-P5 high quality assembly: contig N50 over IMbp
- > IGB: hybrid/gap filling
 expect contig N50 to be 100kbp 1Mbp
- > 5GB: Email mschatz@cshl.edu

Acknowledgements

Schatz Lab

Rahul Amin Tyler Gavin James Gurtowski Han Fang Hayan Lee Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan 7ak Lemmon Eric Biggers Ke Jiang Shoshana Marcus Giuseppe Narzisi **Rachel Sherman Greg Vurture** Alejandro Wences

<u>CSHL</u>

Hannon Lab Gingeras Lab Jackson Lab Hicks Lab **Iossifov Lab** Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Tuveson Lab Ware Lab Wigler Lab

IT & Meetings Depts. Pacific Biosciences Oxford Nanopore

National Human Genome Research Institute

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Thank you http://schatzlab.cshl.edu @mike_schatz